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ABSTRACT

A software package which Integrates Model reduction and Controller design (The
IMC software) is applied to design controllers for the JPL Large Spacecraft Control
Laboratory Experiment Facility. Modal Cost Analysis is used for the model reduction,
and various Output Covariance Constraints are guarantced by the controller design.
The main motivation is to find the controller with the "best” performance with respect
to output variances. Indeed it is shown that by iterating on the reduced order design
model, the controller designed does have better performance than that obtained with the
first model reduction.
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1. INTRODUCTION

The objective of this research is to develop controller design software IMC
(Integrated Modeling and Control) for a realistic flexible space structure control
problem. The main interests are two-fold: i) the design of high performance fixed order
dynamic controllers for this complex structure, and ii) to test the efficacy of the IMC
software for the search of the controller with the "best" performance, among all model
based controllers.

Almost all available controller design techniques are based upon a given model
of the physical plant. In general, perfect models are impossible to construct. Modeling
error exists in every mathematical model used for control design. There are three ways
to deal with modeling error in a controller design procedure. First, one may use robust
control theory. The controller designed with robust control theory is tolerant to a
specified set of modeling errors. But a poor model may lead to a poor controller even if
the controller is robust with respect to the given model. Second, one may treat the
modeling and controller design as a combined problem, and try to refine the design
model to find one that is "appropriate” for controller design in the sense of best closed
loop operation. The third method is adaptive control which intends to adjust the
controller in real-time to compensate for modeling errors.

From our experience a nominal controller design procedure based on an
"appropriate” model may yield better performance than a robust controller that is based
on an poor model (say, given by finite element modeling or identification). Hence, we
use the second method to obtain a design model that is more compatible to the
particular controller design than the other two methods.

In this research the integrated design procedure is applied to design controllers
for the LSCL Experiment Facility. Assuming that a "true enough” high order
mathematical model can be obtained by some modeling method (analytical or by
identification), our procedure reduces the "true enough” model (we shall call this the
"evaluation model") to an order appropriate for full order controller design based on the
reduced order model. Repeating the model reduction and controller design by using
closed loop information such that the process is convergent, the integrated procedure
produces a design model "appropriate” to the corresponding controller.

The model reduction technique used in this experiment is the Modal Cost
Analysis (MCA) which calculates each modal contribution V; to a weighted quadratic
cost function [7-9].
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where N is the number of modes in the model. The smallest contribution (smallest V;)
indicates the modes to be deleted in the reduced model. Closed form analytical
expression of V; are available, see [8].

Two controller design methods (BOCC and EOL.) were applied to this
experiment. The BOCC algorithm [1-4] designs controllers minimizing the control
effort subject to output covariance constraints (for zero mean white noise input). The
BOCC algorithm can be also used to satisfy the output [.. constraints when the input is
an [, disturbance. The EOL.. algorithm [S5] is an extension of the deterministic
interpretation of the BOCC. The EOL.. designs controllers to satisfy given output (.
constraints when the input {, disturbances have an outer product matrix upper bound.
The main difference between those two 7d':é:s'i;gn algorithms is that the BOCC algorithm
only iterates on the feedback gain, but the EOL.. algorithm iterates on both estimator
and control feedback gains. We only present the BOCC results in this paper. The
definition and solution of the BOCC and EOL.. can be found in [3-5].

There are two iteration loops in the IMC software, one inner loop and one outer,
used to realize the integration of model reduction and controller design. The inner loop,
called the o-loop, intends to obtain the controller for "best" performance (with respect
to the evaluation model) with the given reduced order model (called the design model)
by gradually increasing the required performance (smaller variance constraints). The
~ outer loop iterates on the design model to make the design model be "appropriate” to
the corresponding controller with the "best" performance.

The paper is organized as follows. Section 2 combines model reduction and
controller design techniques which is the main philosophy of the IMC software
presented in Section 3. The controller design and test results are presented in Section 4.
The last section adds some conclusions.

2. INTEGRATION OF MODEL REDUCTION AND CONTROLLER DESIGN
It is well known that finding a good model for control design is a difficult

problem because of uncertain parameters, nonlinearity and neglected dynamics of the
physical system. It is impossible to separate the modeling and controller design

429



problems. For example, considering a linear system with a nonlinear actuator, one may
apply linear control theory to design a controller. In this case the nonlinear actuator
should be linearized at some nominal point, but the nominal point is related to the
control signal level of the controller which will be designed after linearization of the
actuator model. Consequently, the modeling and controller design problems become an
iterative process, see the examples in [6].

In this section we mainly consider the effect of the neglected dynamics of the
physical system. We are trying to obtain the "best” performance for a high order given
physical system with a fixed order controller. There are at least three ways to find a
fixed order controller for a given linear system. The first way is to design a fixed order
controller directly. The second is to design a full order controller first and then reduce
the controller to the required order. The last one is to reduce the model first and then do
the full order control design based on the reduced order model. The advantage of the
first method is that the performance of the closed loop system with the designed
controller is guaranteed. But unfortunately there exists no closed form for the design of
such controllefs. Since full order controller design methods are available for most
control theories, H.., LQG and so on, we will use a variation of the third method, we
call the integration of model reduction and controller design, to design reduced order
controllers. ,

The iﬂtegrated design procredlrnr'e,” utilizing Modal Cost AnalySis for model
reduction and the BOCC or EOL.. for controller design, is shown in Figure 1. The
design procedure searches for the controller with the "best" performance by tuning the
design model until the design modeimcici)rrfe'spdnds to the controller with the "best”
performance. This procedure is developed under the following basic assumption that
the only modeling errors existing in the design model are from the model reduction, i.e.,
the evaluation model is assumed to be "true enough”. This assumption allows us to
evaluate the designed controller based on the evaluation model, p'ri(')r to hardware
testing in the lab. Of course, we also compare these analytical results with the
experimental results.

The evaluation model in Figure 1 can be obtained either from system
identification or from mathematical modeling, e.g., the finite element model combining
with the sensor and actuator dynamics. Generally, the size of the evaluation model is
too large for controller design. Hence, the model reduction is necessary.
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The cost function defined in (1.1) used in the model reduction is the summation
of the weighted output variance with respect to the white noise input. Note that the
modal cost is very much dependent upon the input and output weighting matrices
W =diag[W, R] and Q, where the input weighting matrix W is used to compute the
output covariance. Hence, the choice of those two matrices will directly effect the
model reduction. How to choose Q and W is a major subject of this paper. For the first
iteration of this experiment, matrix W is the input white noise covariance matrix W,
and Q and R are diagonal matrices whose elements are the inversed square of the hard
limitation on inputs and outputs, respectively.

The main philosophy of our a-loop in Figure 2 is to obtain a sequence of
controllers from low control effort to high. Here o denotes the controller number. The
controller sequence is obtained by reducing the required performance specification
during controller design.

The main purpose of the BOCC a-loop is to obtain the "best" performance with
the given (reduced order) design model (obtained from MCA model reduction of the
evaluation model), which is expressed in the following form

xp(k+1) = Apxp(K) + Byu(k) + Dpwp(K)
yp(k) = Cpxp(k) . 2.1)
z(k) = Mpxp(k) + v(k)

The BOCC a-loop starts with the evaluation and design models. Suppose that the
output yp can be divided into m output groups ¥;. Let Y;(0) (i=1, 2, ..., m) denote the
open loop output covariance of the evaluation model for output group y;, assuming that
the open loop system is asymptotically stable. Define L; (i=1, 2, .., m) to be a lower
bound of the output covariance of the closed loop system with any full order controller.
Hence, any specification which is less than or equal to L; is unachievable with respect
to the design model. Then the specification matrix ?i(a) i=1,2,.. m) can be
generated by the following equation

Y =[Y;0-LJ1-P*+L; , a=1,2, ., 0on, (2.2)

where 0 < B < | is a design parameter and « is the integer counter (iteration number for
the a-loop). Note that the specifications are gradually reduced as o increases. The main
reason to use (2.2) to produce specification ?i(a) is to make the change of specification
small (from one iteration to the next) when it is close to its lower bound L;.
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With each set of design specifications Y;(a), the BOCC algorithm will produce a
controller with index ¢, called the ath controller, using the design model (2.1). The
closed loop system with the design model and the ath controller is asymptotically stable
because the BOCC controller is an LQG controller with a special choice of the output
weighting matrix. But the closed loop system with the evaluation model may not be
stable. If the closed loop system with respect to the evaluation model is unstable, the
o-loop will be terminated, according to the BOCC a-loop diagram in Figure 2,
otherwise the output covariance matrices Y{(a) and Y{’(a) with respect to the
evaluation and design models will be computed for future use.

Since the open loop system is asymptotically stable, the closed loop system will
be asymptotically stable if the controller gain is small enough. As the control gains
increase, i.e., a increases, the closed loop system with respect to the evaluation model
may become unstable. Hence, a plot similar to Figure 3 can be generated for analysis.
We use o, to denote the point with the "best” performance with respect to the
evaluation model. The information on the ayth controller will be used for the new
model reduction because we want the design model to be "appropriate” to the controller
with the "best" performance. The new output and input weighting matrices Q and R will
be computed in the following way

Qi = 0qQi(0) + (1 — ag) o[ Y§(ap)] - oY (0)] I Iy (2.3a)
Q=block diag[Q,, Q2, ..., Qm] (2.3b)

and 7
R =aR(0) + (1 - a;)diag([ .... (o) = Uf(@y)l, ..D) (24)

where 0 <oy <1 and 0<0, <1 are design parameters. R(0) is the controller channel
input weighting matrix used in the first MCA model reduction. Uj(at) and Uj’(ab)
G=1,2, .., ny) are the closed loop input variances of the oyth controller with respect
to the evaluation and design model respectively. Similarly, Y (ay) and Yd(oy,) are the
output covariances. The main reason to add these items to correct the input and output
weighting matrices is to reduce the differences between the evaluation and design
models for the o, th controller. y

Q,(t) is the convergent output weighting matrix for the ith block during the
design of the ayth controller. The importance of Q;(ay) can be clearly observed in the
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equal to one). It is noted that during the OVC design iteration procedure the output
weighting matrix Q is adjusted so that if a particular output specification Y; is not
achieved, the corresponding Q; will be increased according to the discrepancy between
the current output variance Y; and the specification Y,. Consequently, those outputs
with hard-to-achieve specifications (indicated by Y; = Y;) will end up with large Q;’s,
and those with easy-to-achieve specifications (Y; < Y,;) will have the small Q;’s. In fact,
for those outputs that end up with variances smaller than the corresponding Y;'s the
final convergent Q;’s will be zero. This implies that these output constraints are not
important and can be disregarded during design. However, at the beginning, this
information is unknown. As a result, the convergent Q appropriately reflects the
importance of each output with respect to the given specification. This property is very
helpful for the model reduction using Modal Cost Analysis, because MCA calculates
the contribution of each mode to a weighted output cost € ..yTQy and deletes the least
important modes accordingly. Hence, if the weighting matrix can appropriately reflect
the importance of each output, then the reduced model using MCA will keep the
information which is important to the required performance.

The controller evaluation part mainly evaluates the designed controllers in the o-
loop study to see whether the performance is satisfactory or not. The evaluation (plot in
Figure 3) will provide the information to adjust these design parameters, €.g., O, O4
and so on, in the a-loop study.

As a result, it is clear now that in the integration of model reduction and
controller design there are two iterative loops, the Q-loop and a-loop. The Q-loop is
used to combine the model reduction and the controller design process such that at
convergence the design model corresponds to the controller with the "best”
performance. The a-loop intends to search for the controller of the "best" performance

with respect to the evaluation model, and a given design model.

3. THE IMC SOFTWARE

An IMC (Integration of Model reduction and Controller design) software has
been developed to integrate the model reduction and controller design process
presented in the last section. The IMC software makes it possible to obtain the rapid
redesign capability in a workstation environment using MATLAB.
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The idea of the integrated procedure of model reduction and controller design
was first applied to design controllers for NASA’s Minimast at Langley Research
Center [10]. The realization of this integrated idea needs a certain amount of
computation, and some expert is needed to manage the whole integrated design process.
Some parameters must be chosen, and if changed, the whole process must be repeated.
In order to reduce the repeated work during the integrated controller design process, we
are motivated to put all the independent software modules, e.g., MCA model reduction,
OVC, BOCC and EOL.. controller design software, together to form a software
package IMC. If some information of the physical system (like pulse responses), or a
mathematical model is available, the software will go through the whole integrated
process automatically such that a person who has no knowledge of MATLAB can
design controllers using this software. This software is programmed in MATLAB
which is available in most workstations.

The main idea of this software is shown in Figure 1. For a physical system, the
mathematical model of the given system can be obtained by identification or by
mathematical modeling. Then "tiljré;ws’bftware starts gﬁiﬁt};\g:r with the signals which are
necessary for identification dr wiﬁtrh't'he: given mathe;pgt_icél model. Based on the given
model or identified model, the integrated process' will produce controllers for
evaluation. If the requirements of the evaluation are satisfied, the controllers can be
implemented in the hardware equipment for testing.

For this experiment, we used the finite element model plus sensor and actuator
dynamics as our evaluation model. The IMC controller design process is shown in
Figure 2. The IMC software (Version imc_g03) has seven modules as follows.

i) Constructing a continuous and discrete evaluation model from the given
finite element model.

if)  Constructing a design model by MCA model reduction.

iii) Constructing a discrete evaluation model by identification (not available).
iv)  a-loop study — discrete OVC controller design.

v)  a-loop study — discrete BOCC controller design.

vi)  a-loop study — discrete EOL., controller design.
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vii) Evaluation Tool.

To design a controller from the finite element model, one can use modules i) and
ii) to form the discrete state space evaluation and design models. Choosing an a-loop
controller design module, (for example, the BOCC a-loop study), one can iterate on the
modules ii) and iv) to carry on the Q-loop. After the Q-loop has converged, one can
evaluate designed controllers using module vii). Now let us introduce each module in
detail.

Using frequencies and mode shape vectors obtained from the finite element
analysis, the first module combines the finite element model with sensor and actuator
dynamics to form a continuous time state space model. By choosing a proper sampling
rate, the discrete evaluation model can be obtained by discretizing the continuous time
model. In the case that the order of the finite element model is relatively high, an
additional (optional) MCA model reduction can be applied to obtain a lower order
evaluation model.

The MCA model reduction module includes two kinds of MCA model reduction
routines, continuous and discrete versions. The discrete reduced order model can be
obtained from the discretized high order model by both continuous and discrete MCA
model reductions, because both MCA results provide the contribution of each mode to
the total cost, which can be used to decide which mode should remain in the design
model. Also a modal cost analysis table will be generated.

Using the pulse responses or white noise responses, the identification module (not
yet available) will produce an identified evaluation model by the q-Markov COVER
method in [11-13].

The a-loop study modules for the OVC, BOCC and EOL.. controller design are
similar. Here we only discuss the BOCC o-loop study module. The block diagram of
the BOCC a-loop study is shown in Figure 2. The main philosophy of the a-loop study
is to obtain a sequence of the controllers from low control effort to high. As a result, the
controller of the "best” performance can be obtained among those controllers.

The evaluation tool box module includes seven blocks described as follows.

1) Plotting pole locations.
ii)  Discrete simulation of pulse responses.

iii)  Plotting output variances with respect to .
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iv)  Simulation with arbitrary input functions.
v)  Continuous simulation of pulse responses.
vi)  Transferring MATLAB dqta file to ASCII code data files.

vii) Plotting FORTRAN simulation responses.

4. CONTROLLER DESIGN AND EXPERIMENTAL RESULTS

4.1 System Description and State Space Model

The JPL Large Space Control Laboratory Experiment Facility [14] is shown in
the Figure 4. The main component of the apparatus consists of a central hub to which
12 ribs are attached. The diameter of the dish-like structure is slightly less than about 19
feet, the large size being necessary to achieve the low frequencies desired. The ribs are
coupled together by two rings of wires which are maintained under nearly constant
tension. Functionally, the wires provide coupling of motion in the circumferential
direction which would otherwise occur only through the hub. The ribs, being quite
flexible and unable to support their own weight without excessive droop, are each
supported at two locations along their free length by levitators. A levitator assembly
consists of a pulley, a counterweight, and a wire attached to the counterweight which
passes over the pulley and attaches to the rib. The hub is mounted to the backup
structure through a “gimbal an'angement so that it is free to rotate about two
perpendicular axes in the horizontal plane. A flexible boom is attached to the hub and
hangs below it, and a weight, simulating the feed horn of an antenna, is attached at the
bottom end of the boom. A 3 foot long boom is used for this experiment.

Actuation of the structure is as follows. Each rib can be individually manipulated
by a rib-root actuator mountg:gf on that rib near the hub. A nb root actuator reacts
against a mount which is rigidly attached to the hub. In addmon two actuators are
provided which torque the hub about its two gimbal axes. The hub torquers do not
provide torque directly but rather are linear force actuators which produce torque by
pushing or pulling at the outer circumference of the hub. The placement of these
actuators guarantees good controllablhty of all of the flexible modes of motion, The
locations of the actuators are shown in Figure 5. Two hub actuators are used for control
in x and y directions. They are denoted by HAl and HA10 respectively. The transfer
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function from command torque to net torque is shown as follows.

T(s) _ 3947.8
Tc(s)  s2+44.43s+3947.8

4.1

Only four rib root actuators are used in this experiment. They are rib root actuators on
ribs 1, 4, 7 and 10, denoted by RA1, RA4, RA7 and RAI10. The transfer function from
the command force to the net force is

F(s) _ 24674
F.(s) s+ 111.1s+24674

4.2)

The sensor locations are also shown in Figure 5. First, each of the 24 levitators is
equipped with a sensor which measures the relative angle of the levitator pulley. The
levitator sensors thus provide, in an indirect manner, the measurement of the vertical
position of the corresponding ribs at the points where the levitators are attached. Four
position sensors measure rib displacement at the rib-root actuator locations. Sensing for
the hub consists of two rotation sensors which are mounted directly at the gimbal
bearing. There are a total of 24 levitator sensors used for measurements. They are
denoted by LS1 to LS24. The transfer function from the physical output to the
measurement is assumed to be one because the optical sensor has pretty wide
bandwidth. Two hub optical angle sensors, HS1 and HS10, are used to measure the hub
angle in x and y directions. Similarly, the transfer function is assumed to be one. Only
four rib root sensors, RS1, RS4, RS7 and RS10, are available for measurements. The
dynamics are omitted (the transfer function is assumed to be one). Since the hub and rib
root sensors are very noisy, a first order filter is applied for each of those six sensors.
The transfer function of the filter is

Hes) = 302.65

= — . 4.
s +502.65 43)

A summary of outputs and inputs is contained in Table 1.

JPL created two finite element models with 30 and 84 modes respectively. The
30 mode finite element model is used in this experiment. All modes with natural
frequencies less than 10 Hz are given in Table 2. Let the structure be described in its
modal coordinates by the following
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ni + 2&;em; + ofn; =blu, , i=1,2,.,30
30 , (4.4)
Yy =2 PiMi
i=1
where u, is the actuator output signal and y is the displacement vector co-located with
the sensor inputs. JPL provided 30 frequencies (w;, i=1, 2, _.., 30) and 30 mode shapes
(pi, i=1, 2, ..., 30) obtained from a finite element analysis.
The actuator output signal u, is now filtered by hub actuator and rib root actuator

dynamics modeled by the following

X, = A,;x, + Byu 45)
u, =Cyxa +wp ’ ’

where u is composed of the command signals to the hub and rib root actuators, and wp
is the actuator noise with intensity V_Vp. The measurement output z now can be

presented by

Xs = A X + Bgy 46)
z =Cexg +Dgy+v .

where v is the sensor noise with intensity V. Combining models (4.4-4.6), we can
obtain a continuous time full order model. Since the frequencies of all modes in our
model are less than 5 Hz, we discretize the continuous model at 25 Hz which is the
computer sample rate. The discrete evaluation model is as follows.

xe(k+1) = Axe (k) + Bou(k) + Do w,(K)
Yp(k) =Cex.(k) , 4.7
z(k) =Mx. (k) + v(k)

where wp, and v are white noise with covariance matrix W, =V—VP/25 and V=V/25

respectively.

4.2 The BOCC Controller Design and Experimental Results
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The design strategy used here is the integration of model reduction and controller
design introduced in the last section. Using the open loop experimental results at JPL,
we adjusted some frequencies, damping coefficients and input/output magnitudes such
that the responses of the finite element model combining with the sensor and actuator
dynamics were closer to the experimental pulse responses. The adjusted frequencies
and damping coefficients are shown in Table 2. The magnitude coefficients vary in
different designs.

4.2.1 The OVC Design and Experimental Results

The OVC Controller Design

We start controller design with the OVC algorithm because the OVC problem is a
special case of the BOCC. Note that in this case the constraints on the output
covariance matrices reduce to those on output variances. Hence, all the constraints are
scalars. Some errors in the finite element model of the structure are found. The errors
result from the sign convention on the hub sensors. Also the units used in the finite
element model and those used in the real-time control computer are different. The units
used in the measurement and output are meter and radian in the finite element model
but those in real-time control computer are milli-meter and milli-radian. We use
input/output scaling matrices to overcome unit differences and finite element modeling
errors. The input scaling matrix is

S, =diag[0.5, -1, 1, 1, 1, 1]e+3 , 4.8)

and the output scaling matrix Sy is a diagonal matrix with unity diagonal entries except
the 26th diagonal element which is negative unity. The finite element model provided
by JPL is modified by redefining the input vector S,u, and output vector Syy as u, and
y in (4.4) respectively. The evaluation model used in this design is obtained by
combining the modified finite element model, sensor and actuator dynamics in (4.4-
4.6). The evaluation model is discretized at a sampling frequency 25 Hz. The state
space realization of this model is in the form (4.7), where A, B,, D, C. and M, are
the system matrices respectively of dimension 78 x 78, 78 x 6, 78 x 6, 30 x 78 and
30x 78, and u, y, and z are input, output and measurement vectors, respectively, as
described in Table 1. Vector w,, is the system noise from hub and rib root actuators with
the following variances,
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W, = diag[0.04, 0.04, 0.04, 0.04, 0.04, 0.04] . 4.9

Vector v is the measurement noise of the levitator, hub and rib root sensors with the

following variance,
V = block diag [1.562513;, 3.05001,, 0.25001,] , ' (4.10)

where the suffix of matrix I indicates the dimension of the identity matnix. All the
variances are taken from signal to noise ratios.

In order to decide the order of the controller to be used, we designed 12th, 16th,
20th and 24th order controllers for the first Q-loop. It turns out that 16th, 20th and 24th
order controllers have close performances with respect to the evaluation model. But the
12th order controller yields poor performance. Hence, we choose controller order to be
16. The 16th order controller is designed by using the design methodology presented in
the last section. '

The design parameters used in this design for the Q—loop are

B=02; ag=05; ay,=05. (4.11)

We compute the open loop output variance Y;(0) with respect to the evaluation model,
and the lower bound L; for the design model.

The Modal Cost Analysis results for the different Q-loops 1 and 3 can be found
in Table 3. The first 8 dominant modes in the Q-loop 1 and 3 are the same. Hence, in
this case the Q-loop will not converge but oscillate between two models which are
obtained in Q-loop 1 and 2. Since the "best" performance with respect to the evaluation
model is obtained in Q-loop 2, we use the reduced order model of Q-loop 2 which
keeps modes 2, 1, 14, 13,27, 28, 4 and 6 as the final design model. The iteration on the
Q-loop is terminated at Q-loop 3.

Note that for each Q-loop the OVC a-loop algomhm produces a number of
controllers from low to hxgh control effort. The mput/output variance curves of Q-loop
2 for the 16th order controller design are shown in Figure 6. The solid curve with "0" is
the performance of the controllers obtained from the OVC algorithm evaluated with the
design model. The dashed line with "*" evaluates these controllers with the evaluation
model. In the a-loop study, 13 controllers are produced The first 12 controllers
stabilize the evaluation model. The output variances of the closed loop system with
respect to the evaluation model are plotted in Figure 6. The a-loop iterations terminate
because the 13th controller destabilizes the evaluation model. -



From Figure 6 it can be observed that the "best” performance for outputs 4 and 5
is provided by the closed loop systems obtained by evaluating controllers 8 and 9 with
the evaluation model. Similar input/output variance curves of Q-loop 0 are obtained. In
order to show the improvement of iterating the design model, we compute the
differences between the output variances of Q-loop 0 and those of Q-loop 2 for each
output. Let Y,(i,j) and Y(i,j) denote the ith output variance obtained by evaluating the
jth controllers of Q-loop 2 and O with the evaluation model respectively. Plots
[Y2(1,8) — Yo(i,8))/Y(i,8) and [Y2(1,9) — Yo(i,9)/Yo(i,9) can be found in Figure 7.
Since plots for controllers 8 and 9 are negative for almost all outputs, it is clear that the
Q-loop improves the model reduction and controller design process, i.e., a better
controller with respect to the evaluation model can be obtained by integration of model
reduction and controller design.

The OVC Controller Experiment

Controllers 1, 3, 5, 7, 9, 11 and 13 of Q-loop 2 were tested on the JPL LSCL
Experiment Facility. It is expected that the responses of controller 1 are pretty close to
the open loop ones due to low control effort. The sequence of controllers allows one to
do lab tests easily with little risk of damaging the system. Starting with low control
effort controller, we can test controllers one by one with increased control effort, and
stop the test when some controller destabilizes the system, or the oscillations become
unacceptable. Because the control effort is increased gradually, the test facility will not
be damaged. This is a nice feature of the integrated controller design strategy.

Since the system is highly damped, a pulse input with the width equal to a sample
period (0.04 second) does not excite the system much. Hence, it is difficult to compute
all the output variances by experimental data. We did the pulse experiments for each
controller obtained in Q-loop 2 with pulse input on HA1 and HA10 respectively, where
the magnitude of the pulse is 2 Newton-meters, and the width is 4 seconds (100 sample
periods). We computed the input and output [, norms in the following way

WOl 2a? §$ uTEu) ; (4.12a)
k=101

Ol 242 § 2@ . - (4.12b)
k=101

where A =0.04 second is the sample period and p = 1001 is the number of sample
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periods used for the test. Using (4.12) Figure 8 presents plots of input/output [, norms
for outputs 4, 5, 16 and 17, where the dotted line with "+" is associated with
experimental data, dashed line with "*" is obtained from simulated data with the
evaluation model, and the solid line with "0" is also from simulated data but with the
design model. Note that we did not test every controller designed in the a-loop study of
Q-loop 2. Hence, the "+" signs on Figure 5.4 are the [, norms of the open loop
responses and closed loop responses related to controllers 1, 3, 5,7, 9, 11 and 13 from
left to right. Due to noisy data and the difference between the finite element model and
the real structure, lab tested [, norm curves stay above the simulated ones. It is obvious
that the 9th controller in the a-loop study of Q-loop 2 provides the "best” closed loop
[, response, which is consistent to the a-loop study result. In the a-loop study of Q-
loop 2, the 13th controller destabilizes the evaluation model. It turns out that the closed
loop system with that controller is unstable, too. It is clear from Figure 8 that the [,
norms blow up for controller 13. Hence, the test result agrees with the analytic one. The
controller yielding the best performance experimentally is the best controller from the
analytical designs.

Because the control experiment facility has no special channels to apply
disturbances, the test has been done in such a way that the system is open loop at t=0,
when exciting signals are applied to the structure through control actuators. When the
open loop command signals vanish, the control loop will be closed to conduct the
closed loop experiment. Hence, the exciting signals applied through the actuator
channels provide the initial condition for the structure.

The pulse responses of HA1 with controller 9 of Q-loop 2 are shown in Figure 9,
where all input pulses are with the magnitude 2 Newton-meters and period 4 seconds.
Hence, the closed loop control started at the 4th second, and open and closed loop
responses are supposed to be the same for the first 4 seconds. It is obvious that the first
two modes with frequency 0.0902 Hz are excited. From those responses, it is clear that
the controller improves the performance of the system.
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4.2.2 The BOCC Design and Experimental Results

The BOCC Controller Design

From the experience of the OVC controller design we feel that it is not necessary
to use all outputs for controller design because of the symmetrical property of the
structure. Hence, we choose to reduce the output number for the model reduction and
control design process but still use all 30 measurements for the control design purpose.
Outputs used for the BOCC design are

Yp =[¥1 Y4 Y13 Y16 Y25 Y26 Y27 yaslT . (4.13)

We group outputs in the following way

~ AN -~ A |Y13 ~ A |Y25 ~ A |Y27
1= VY2 = s Y3 = ¥4 = . 4.14)
Y4 Yi6 Y26 Y2

Hence, in this case constraints of the BOCC problem are 2 X 2 matrices for all output
groups. Physical interpretation of this design is clear. Consider the output group y;
which is hub angle in x and y directions. Suppose that the maximal singular value of the
constraint matrix is ¢3. Then the design will guarantee that the hub angle at any
direction of x—y plane will be less than or equal to the square root of &3 times the input
{, norm.

According to the lab test of the OVC controllers, the output scaling matrix is
changed as follows

S, = block diag[lps, 1, -1, 0.1L] , (4.15)

where the subscript of matrix I denotes the dimension of the identity matrix. The input
scaling matrix remains unchanged.

The noise covariance matrix W is changed to a non-diagonal one to allow
correlated noise on rib root actuatoré, where
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0.040 0.000 0.000 0.000 0.000 0.000
0.000 0.040 0.000 0.000 0.000 0.000
W = 0.000 0.000 0.720 0.360 0.360 0.360 (4.16)
P~ 10.000 0.000 0.360 0.720 0.360 0.360| |

0.000 0.000 0.360 0.360 0.720 0.360

0.000 0.000 0.360 0.360 0.360 0.720

J

We choose to design the 20th order controller for the BOCC problem. The
design parameters used in this design for the Q-loop are

B=02; 0g=0.5; 0, =05 . (4.17)

The open loop output covariance matrix and lower bound of the output covariance
matrix are computed in same way as in the OVC design.

The MCA model reduction results of the BOCC design is quite similar to the
We plot the closed loop output maximal singular value curves with respect to the
summation of input variances, where the maximal singular values are computed with
respect to the design and evaluation models. The plot for Q-loop 2 is shown in Figure
10, where all symbols have the same meaning as those in the OVC design. It is
observed that the "best" performance of output group 1, which is difficult to be
achieved by the design, is provided by the 12th controller designed in Q-loop 2. Those
controllers designed in Q-loop 2 were tested in the lab. In the a-loop, fifteen
controllers are designed. All controllers stabilize the evaluation model. The 12th
controller provides the "best" performance for output group 2.

The BOCC controller Experiment

The controllers 1, 3, 5, 7,9, 11 and 13 of Q-loop 2 were tested on the JPL LSCL
Experiment Facility. We define the £, norm for each output group as

o3 2a? € 5iws0 s i=12 .4, 4.18)

k=101
with the same definition on the input {, norm as in the OVC case. The input/output [,
norm curves of the BOCC test are shown in Figure 11. From the input/output {, norm
plots in Figure 5.11, the "best" [, performances are obtained by the 11th controller of
Q-loop 2. The analytical {, responses of output group 4 are quite different from the



test. We have no definitive answer, but we attribute such difference to nonlinearity and
friction. All experiments have been done in the same way as the OVC design. The pulse
responses of controller 11 with the same exciting signals as the OVC test can be found
in Figure 12.

5. CONCLUSIONS

A reduced order controller design methodology with an integration of model
reduction and controller design has been applied to the JPL LSCL Experiment Facility.
This design strategy is an extension of that in [10,15]. The design strategy has provided
a practical method for large space structure controller synthesis. The application of this
strategy to the JPL LSCL Experiment Facility has met our high expectation.

From this experiment, we see that iterating between modeling and control
(selecting an "appropriate” design model) plays an important role in the controller
design. For two different design objectives (the OVC and BOCC designs), the iteration
in the Q-loop improves the design model, which indicates that the integration of model
reduction and controller design does improve the controller synthesis.

This is the first BOCC controller design tested in lab. The BOCC design
algorithm, which is a generalization of the OVC and OCC algorithms, works well for
this project. The difference in the performance between the OVC and BOCC design is
attributed to the difference in the type of design specifications, rather than any
preference for one method over the other. The BOCC is much more general, including
the OVC as a special case.

Finally, a MATLAB software package IMC has been produced to integrate
modeling and controller design for flexible structures. This is the first experimental test
of this software.
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Table 1 Inputs, Outputs and Their Limits

Inputs Outputs
Hub Actuator Hub Sensor
Notation Limit Notation Limit
HA10 (u;) | 2(N-M) HS1 (yys) 69.8 (mrad)
HA1 (u;) | 2(N-M) HS10 (y26) 69.8 (mrad)
Rib Root Actuator Rib Root Sensor
Notation Limit Notation Limit
RA1 (u3) 2(N) RS1 (y27) 10 (mm)
RA4 (ug) Z2(N) RS4 (yz3) 10 (mm)
RA7 (us) 2(N) RS7 (yy9) 10 (mm)
RA10 (ug) 2(N) RS10 (y30) 10 (mm)
~ Levitator Sensor
Notation Limit
LS1-LS24 (y; —yy) | 114.3 (mm)
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Table 2 Frequencies and Damping Coefficients

Frequency (Hz) Damping Coeff.
Mode No.
(Original) | (Modified) | (Original) | (Modified)
1 0.0902 0.0975 0.0100 0.1225
2 0.0902 0.0917 0.0100 0.2500
3 0.2089 0.2089 0.0263 0.0263
4 0.2527 0.2527 0.0100 0.0100
5 0.2527 0.2527 0.0100 0.0100
6 0.2894 0.2894 0.0100 0.0100
7 0.2894 0.2894 0.0100 0.0100
8 0.3218 0.3218 0.0100 0.0100
9 0.3218 0.3218 0.0100 0.0100
10 0.3435 0.3435 0.0100 0.0100
11 0.3435 0.3435 0.0100 0.0100
12 0.3509 0.3509 0.0100 0.0100
13 0.6150 0.6250 0.0200 0.0200
14 0.6150 0.6200 0.0300 0.0300
15 1.5083 1.5083 0.0100 0.0100
16 1.5295 1.5295 0.0100 0.0100
17 1.5295 1.5295 0.0100 0.0100
18 1.5461 1.5461 0.0100 0.0100
19 1.5461 1.5461 0.0100 0.0100
20 1.5625 1.5625 0.0100 0.0100
21 1.5625 1.5625 0.0100 0.0100
22 1.5744 1.5744 0.0100 0.0100
23 1.5744 1.5744 0.0100 0.0100
24 1.5746 1.5746 0.0100 0.0100
25 1.6842 1.6842 0.0100 0.0100
26 1.6842 1.6842 0.0100 0.0100
27 257N 25771 0.0100 0.0100
28 2.5771 2571 0.0100 0.0100
29 4.8576 4.8576 0.0100 0.0100
30 4.8576 4.8576 0.0100 0.0100
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Table 3 Modal Cost Analysis of the OVC design for Q-loop 1 and 3

Q-loop 1 Q-loop 3
Index =9 a,=9
Modal Cost | Mode No. | Modal Cost | Mode No.
1 6.6723e+1 2 6.7071e+1 2
2 2.5040e+1 1 2.3619e+1 1
3 4.2676e+0 14 4.8554e+0 14
4 2.2173e+0 13 2.6104e+0 13
5 4.7986e-1 4 4.7182¢-1 4
6 2.0138e-1 8 1.9765¢-1 8
7 1.9129-1 3 1.8981e-1 7
8 1.7050e-1 7 1.7689-1 3
9 1.4221e-1 6 9.9888¢-2 6
10 8.7302e-2 11 7.9285¢-2 16
11 7.9527¢-2 12 7.8692e-2 11
12 7.8317e-2 10 7.5395¢-2 10
13 5.2735¢-2 16 7.3416e-2 20
14 4.8844¢-2 20 7.3290e-2 12
15 3.3937¢-2 27 5.8980e-2 28
16 3.2116e-2 28 4.9655¢-2 27
17 2.6763e-2 15 3.8368e-2 19
18 2.5116e-2 19 3.8337¢-2 15
19 2.3742¢-2 24 3.4985¢-2 23
20 2.3351e-2 23 3.4597¢-2 24
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